Coventry University
Faculty of Health and Life Sciences

Programme Specification

BSc (Hons)
Biomedical Science (HLSU206)
Applied Biomedical Science (HLSU207)

Please note: This specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities that are provided.

We regularly review our course content, to make it relevant and current for the benefit of our students. For these reasons, course modules may be updated.

More detailed information on the learning outcomes, content, and teaching, learning and assessment methods of each module can be found in the Module Information Directory (MID), student module guide(s) and the course handbook.

The accuracy of the information contained in this document is reviewed by the University and may be verified by the Quality Assurance Agency for Higher Education.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Introduction</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Part 1: Programme Specification</strong></td>
<td></td>
</tr>
<tr>
<td>1- 10 Basic Programme information</td>
<td>4</td>
</tr>
<tr>
<td>11 Educational Aims of the Programme</td>
<td>6</td>
</tr>
<tr>
<td>12 Intended Learning Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>13 Programme Structure and Requirements</td>
<td>10</td>
</tr>
<tr>
<td>14 Support for Students and their Learning</td>
<td>15</td>
</tr>
<tr>
<td>15 Criteria for Admission</td>
<td>16</td>
</tr>
<tr>
<td>16 Methods for Evaluation and Enhancing the Quality and Standards</td>
<td>16</td>
</tr>
<tr>
<td>of Teaching and learning</td>
<td></td>
</tr>
<tr>
<td>17 Regulation of Assessment</td>
<td>17</td>
</tr>
<tr>
<td>18 Indicators of Quality and Standards</td>
<td>18</td>
</tr>
<tr>
<td>19 Additional Information</td>
<td>19</td>
</tr>
<tr>
<td>20 List of mandatory and core option modules</td>
<td>20</td>
</tr>
<tr>
<td>21 Curriculum Map</td>
<td>21</td>
</tr>
<tr>
<td>22 Capabilities (Skills) Map</td>
<td>22</td>
</tr>
</tbody>
</table>
Introduction

The Biomedical Science degree is a broad based science degree which aims to integrate a wide range of subjects to promote understanding of the biology of disease. The BIOMEDICAL SCIENCE Honours course has been accredited by the Institute of Biomedical Science (IBMS) since 2002. The required core subject areas are therefore human biology, cell biology, genetics, molecular biology and immunology, numeracy, statistics and computing and a broad coverage of instrumentation and analytical techniques encompassing separation techniques, identification and quantitation procedures. The first year modules aim to introduce the student to basic scientific principles using examples of disease processes to illustrate the core material. This continues in the second year with greater emphasis on the biology of disease and the introduction of more specialised modules. In the final year the core specialist subjects of immunology, haematology, clinical biochemistry and medical microbiology are all mandatory whilst allowing the students to show a preference for a particular discipline by choosing a module in cancer biology or human genetics. The course therefore covers the main pathology specialisms involved in the diagnosis and understanding of disease: cellular pathology and cytology, clinical chemistry, haematology, immunohaematology and transfusion science, medical microbiology and virology and immunology.

The laboratory sessions are a substantial component of the course, enabling students to learn the experimental techniques and develop the key experimental, data handling and reporting skills required in biological careers. The focus is on a systematic progression of laboratory skills. Literature researching, Information Technology (including word-processing and the use of spreadsheets), computing, quantitative aspects, data processing and the use of statistics are integrated within the course.

In addition the course aims to prepare students for professional practice within the National Health Service as registered Biomedical Scientists. Students therefore receive guidance about careers as biomedical scientists and the expectations of the health professional.

On graduation from the BIOMEDICAL SCIENCE Honours programme students will be eligible to apply for posts as trainee Biomedical Scientists. Appointees to such posts usually undergo 1-2 years training to obtain an IBMS certificate of competence, and are then eligible to apply for HCPC registration. They can then take up Biomedical Science posts (see diagram in Appendix 1).

All students are initially admitted to the IBMS accredited BIOMEDICAL SCIENCE degree. However, students who are successful in obtaining a placement will transfer to APPLIED BIOMEDICAL SCIENCE. They will complete all the necessary requirements for registration during their course and will be eligible to apply for HCPC registration as soon as they graduate and hence will be able to take up Biomedical Science posts (see diagram in Appendix 1). They will also be eligible to apply for licentiate membership of IBMS.

Since both of the Biomedical Science courses provide a broad biological education graduates are also equipped to successfully compete for other careers if they choose not to enter the hospital Biomedical Science profession.
Part 1: Programme Specification for
B Sc (Hons) Biomedical Science HLSU206
BSc (Hons) Applied Biomedical Science HLSU207
* denotes the sections which must be completed at Stage 2 of Strategic Academic Planning.

<table>
<thead>
<tr>
<th>Available Award(s) and Modes of Study</th>
<th>Mode of attendance*</th>
<th>UCAS Code</th>
<th>FHEQ Level*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Science (H)</td>
<td>F/T (3 years)/PT</td>
<td>B940</td>
<td>Honours Level 6</td>
</tr>
<tr>
<td></td>
<td>Sandwich SW or study abroad (4 years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Biomedical Science (H)</td>
<td>Sandwich SW (4 years)</td>
<td>N/A (Alternative award)</td>
<td>Honours Level 6</td>
</tr>
<tr>
<td>Biomedical Science (non Honours not accredited)</td>
<td>Fall back award</td>
<td></td>
<td>Intermediate level 5</td>
</tr>
</tbody>
</table>

2 Awarding Institution/Body *
Coventry University.

3 Collaboration
None

4 Teaching Institution and Location of delivery*
Main University campus.

5 Internal Approval/Review Dates
Date of latest review: May 2014
Date for next review: Academic year

6 Programme Accredited by*
Biomedical Science (Hons) accredited by IBMS
Applied Biomedical Science (Hons) accredited by IBMS and approved by the HCPC
Note Biomedical Science degree (non-honours) is NOT accredited by IBMS or approved by HCPC

7 Accreditation Date and Duration
Reaccredited May 2014
Both courses IBMS accredited to Sept 2018 cohort
HCPC approval renewed 2015

8 QAA Subject Benchmark Statement(s) and/or other external factors *
Subject Benchmark statement for Biomedical Science.
Subject Benchmark statements can be found at http://www.qaa.ac.uk/academicinfrastructure/benchmark/default.asp
The study programme for Biomedical Science complies with criteria and requirements for accreditation by the Institute of Biomedical Science (IBMS).
The study programme for Applied Biomedical Science complies with criteria and requirements for accreditation by the Institute of Biomedical Science (IBMS) and approval by the Health and Care Professions Council (HCPC)
11 Educational Aims of the Programme *

The main aim of the Programme is to provide a course that equips students with the knowledge and skills required to become registered biomedical scientists working in the Health Service or to enter employment in a wide range of medical and scientific environments. Particular emphasis is placed on the specialist areas of biomedical science: clinical biochemistry, medical microbiology, cellular pathology, haematology, immunology and genetics.

In addition, on completion of the course successful students should be able to demonstrate a critical appreciation of:

- the biology of disease and the factors and processes which contribute to human health and disease
- the specialist disciplines in biomedical science and their application to the laboratory-based study of disease and disease diagnosis
- practical problems in biomedical science
- the professional standards and responsibilities of an HCPC registered Biomedical Scientist

In addition, the subject-specific aim of BSc Applied Biomedical Science is that:

On graduation the students have met the HCPC standards of proficiency and are eligible to apply for HCPC registration and enter employment as a Biomedical Scientist within the NHS

Students will be able to access a diverse range of biomedical science focused careers within the Health Service industry, research, and other science areas. As well as having the opportunity to undertake postgraduate activities.

12 Intended Learning Outcomes*

This programme satisfies the QAA Biomedical Science benchmark statements and Coventry University’s Code of Practice for Academic and Professional Skills Development.

Section 21 maps the intended learning outcomes as described in the next section to the programmes mandatory and option modules (as listed in section 20)

Section 22 shows the capabilities that students will be taught, given the opportunity to practise and will be assessed in.

The principal teaching, learning and assessment methods normally used on the programme to achieve these learning outcomes are identified in the next section.

12.1 Knowledge and Understanding*

On successful completion of the programme Biomedical Science or Applied Biomedical Science programme a student should be able to demonstrate knowledge and understanding of

KU1 Human Physiology: the theoretical, analytical and practical aspects of human physiology and their clinical applications (including in health and disease)
KU2 Pharmacology: the theoretical and practical aspects of pharmacology and their applications (including in prevention and treatment of disease)
KU3 Biochemistry: the theoretical, analytical and practical aspects of biomedical biochemistry and their applications (including in health and disease)
KU4 Molecular Biology: the biochemistry of DNA and the theoretical, analytical and practical aspects of molecular biology (prokaryotic and eukaryotic) and their applications (including in health and disease)
KU5 Microbiology: the theoretical, analytical and practical aspects of microbiology and their applications (including in health and disease)
**KU6 Cell Biology:** the theoretical, analytical and practical aspects of cell biology and their applications (including in health and disease)

**KU7 Genetics:** the theoretical, analytical and practical aspects of genetics and their applications (including in health and disease)

**KU8 Immunology:** the theoretical, analytical and practical aspects of immunology and their applications (including in health and disease)

**KU9 Diagnosis and pathology of disease:** the theoretical and practical aspects of disease diagnosis and their application to biomedical science

**KU10 Analytical Science:** the theoretical and practical aspects of chemical, molecular and biochemical analytical techniques

Particularly, KU1,3,4,5,6,7,8,9 & 10 are mandatory in the programme, covering core curriculum and specific applications to Biomedical Science.

In addition, for Applied Biomedical Science students will also be able to demonstrate knowledge and understanding of

**KU11 Professional competence and expectations:** evidenced by satisfactory completion of the registration training portfolio.

<table>
<thead>
<tr>
<th>Teaching and Learning</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU1 To KU10 Lectures, seminars, tutorials, laboratory work, workshops, textbooks, module webs, journals (hard copies and electronic) within theory and laboratory based modules.</td>
<td>Examinations, Individual written coursework (including essays, problem-solving tasks, case studies and laboratory reports), Timed controlled tests (phase tests and essays).</td>
</tr>
<tr>
<td>KU11 Lectures and briefing sessions Completion of Registration Portfolio.</td>
<td>Reflective account, CV and Application Verifier assessed Portfolio.</td>
</tr>
</tbody>
</table>

### 12.2 Cognitive (thinking) Skills*

On successful completion of the programme a student should be able to demonstrate:

**CS1 Laboratory Competence:** the aspects of generic and specialised skills required in experimental biology, including experimentation and measurements on humans, safety (e.g. key laboratory skills and competencies, good laboratory practice) and ethical considerations

**CS2 Research Methods:** the application of scientific methods to critical analysis of literature, evidence based practice, reflection, information searching, and experimental design in the biological sciences

**CS3 Data Collection, Analysis and Presentation:** problem solving, including appropriate aspects of information technology and interpretation of information through statistical methods

The principal teaching, learning and assessment methods normally used to enable outcomes to be achieved and demonstrated are identified below.

<table>
<thead>
<tr>
<th>Teaching and Learning</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1 Practical classes, individual project work, workshops, use of IT based systems, measurements made on human subjects</td>
<td>Practical class and project performance, written practical reports, project thesis</td>
</tr>
<tr>
<td>CS2 Lectures, tutorials, practical classes, individual project work</td>
<td>Tutorial tasks, written practical reports, project thesis</td>
</tr>
<tr>
<td>CS3 Lectures, tutorials, practical classes, individual project work</td>
<td>Tutorial tasks, written practical reports, project thesis</td>
</tr>
</tbody>
</table>

### 12.3 Practical Skills*

On successful completion of the programme a student should be able to demonstrate

**PS1 Laboratory skills:** the ability to work safely in the laboratory, undergoing progressively more advanced laboratory-based investigations based on competence in techniques for physiological measurement, pharmacological assays, analytical biology, biochemistry, molecular biology, cellular physiology and microbiology.
**PS2 Professionalism:** for those students who undertake a Professional Training year the application and development of skills and competencies and professional standards within a particular supervised industrial, commercial and/or scientific establishment. For Applied Biomedical Science this must be in a University approved training laboratory.

**PS3 Team Work:** the ability to operate, to lead and collaborate in a team in order to solve problems of a practical (experimental) nature and to provide appropriate solutions

The principal teaching, learning and assessment methods normally used to enable outcomes to be achieved and demonstrated are identified below.

Modules offered through the Add+vantage scheme will provide opportunities for skills development and support for Personal Development Planning. The development of discipline-based development planning is detailed in Part 2: Supporting information.

<table>
<thead>
<tr>
<th>Teaching and Learning</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1 Laboratory classes, level 3 independent project</td>
<td>Skills demonstrations, assessed practical exercises, laboratory reports, project thesis</td>
</tr>
<tr>
<td>PS2 Lectures, tutorials, placement work</td>
<td>Placement portfolio, placement tutors report, student report, poster presentation and seminar</td>
</tr>
<tr>
<td>PS3 Tutorials, practical classes</td>
<td>Practicals (laboratory competence and reports) and tutorial tasks</td>
</tr>
</tbody>
</table>

### 12.4 Transferable Skills *

On successful completion of the programme a student should be able to demonstrate

**TS1 Personal capabilities:** the skills of reflective practice, presentation, learning and self-management to equip them for a life-long career development;

**TS2 Interpersonal capabilities:** communication skills: the skills to communicate effectively in a variety of situations;

**TS3 Interpersonal capabilities:** - working with others: the ability to work positively as a member of a team;

**TS4 Vocational capabilities:** the ability to appreciate the values, culture, structure and processes of work organisations relevant to their areas of study;

**TS5 Numerical capabilities:** the ability to interpret and present numerical data and apply a range of numerical techniques appropriate to the nature of the work which they are likely to pursue.

**TS6 Information technology capabilities:** the ability to make confident use of computer-based systems, for textual, graphical and numerical information, appropriate to the nature of the work they are likely to pursue.

**TS7 Innovative and problem-solving capabilities:** the ability to apply transferable skills to the execution of individual and group projects involving the definition, analysis and resolution of complex problems.

Transferable/key skills are generally incorporated within modules (see annex 3) and related to relevant assessments as appropriate. Self-directed learning forms an element of all modules and the necessity to work within tight deadlines is an essential requirement across the curriculum. The ability to communicate orally and in writing will be developed across the range of modules.

The wide range of assessment techniques will ensure that students are given every opportunity to demonstrate their skills in these areas.
13 Programme Structure and Requirements, Levels, Modules, Credits and Awards

The Biomedical Science (Hons) course may be undertaken in a full time or sandwich mode.

Students undertaking the sandwich course will have a Professional training year (placement) after they have completed stage 2 of their course.

Placements comply with the QAA UK Quality code for Higher Education Chapter B10 for placement learning and students liaise with the Professional Training tutor and the Coventry University Employability Support Team (EST) to identify and apply for an appropriate work place. Students taking the Professional Training Placement will enrol on the Zero credit rated module 5001BMS. On their return to the University students may complete the 10 credit module A306EEI Post Placement Perspectives.

Students who do a study abroad year will complete the Zero credit module 5002BMS. Successful completion of the zero credit rated placement or study abroad modules is required for the award of a degree with placement or study abroad, but are these modules are not included in the degree classification.

The Applied Biomedical Science (Hons) course is only available as a sandwich course.

Students are eligible for this award on successful completion of the placement in an approved training laboratory, providing they have taken and passed all mandatory modules (see Appendix 2 and 12.2 below) Students who fail the Professional Training year can still qualify for the named full- time award (see section 13.5)

13.1 Programme structure

The programmes are designed to allow students to gain the knowledge and skills they need in biomedical science. The course content has been formulated to meet the needs of contemporary employment opportunities in biomedical science. Hospitals are one of the key employers of biomedical science graduates and the curriculum complies with requirements for IBMS accreditation and in the case of Applied Biomedical Science for HCPC approval.

Modules within the programme, their status (whether mandatory or core-options), the levels at which they are studied, their credit values and pre-requisites are shown in Section 19. Students normally study 120 credits at each level.

Mandatory modules - These must be taken by all students on the programme and ensure that students progressively develop and achieve an acceptable level of knowledge, understanding and skills in the key areas through the course stages. Both theory and laboratory modules are included. In addition the Project module is mandatory for all students taking an honours programme. Students carry out an in-depth study in an area of Biomedical Science and this is a chance for students to develop and demonstrate some important transferable skills.

Core Option modules - Students choose from a list of approved modules. Students are given advice by their level tutors to ensure that they choose appropriate core option modules.

CU Add+Vantage modules - At each level of the course students have to choose 1 CU Add+Vantage module. Biomedical Science students may take any module offered at the University for which they have the necessary pre-requisites.

Add+vantage A201BMS work experience module

Students can choose A201BMS Work Experience in Biomolecular Science as an Add+vantage module in the second year. This module allows them to achieve some of the benefits of the Professional training year without having to spend a full year in employment. This module requires students to undertake 20 days of work (paid or voluntary) in an area that is of relevance to biological or analytical science.

Programmes are shown diagrammatically in Appendix 2
### BIOMEDICAL SCIENCE

#### Level 4 modules

**Mandatory:**
- 4007BMS Human Physiology in Health and Disease (20 credit)
- 4008BMS Biochemistry and Microbiology (20 credit)
- 4009BMS Cell and Molecular Biology (20 credit)
- 4011BMS Skills for Biomedical Science 1 (20 credit)
- 4012BMS Skills for Biomedical Science 2 (10 credit)
- 4010BMS Introduction to Biomedical Analysis (20 credit)
- CU Add+Vantage (10 credit)

#### Level 5 modules

**Mandatory**
- 5017BMS Biomedical Biochemistry (20 credit)
- 5018BMS Cell Biology and Haematology (20 credit)
- 5016BMS Infection and Immunity (20 credit)
- 5020BMS Contemporary Skills for Biomedical Science (20 credit)
- 5021BMS Research Skills for Biomedical Science (10 credit)
- 5019BMS Molecular Genetics (20 credit)
- CU Add+Vantage (10 credit)

**Professional Training year (OPTIONAL)**
- 5001BMS Professional Experience Sandwich Year (Zero credit)

**Study Placement year (OPTIONAL)**
- 5002BMS Study abroad (Zero credit)

#### Level 3

**Mandatory**
- 6016BMS Clinical Biochemistry (20 credit)
- 6017BMS Medical Microbiology (20 credit)
- 6018BMS Haematology and Immunology (20 credit)
- 6020BMS Independent project in Biomedical Science (20 credit)
- 6019BMS Research Design for Biomedical Science (10 credit)

**Plus choice of one from:**
- 6014BMS Cancer Biology (20 credit)
- 6015BMS Applied Human Genetics (20 credit)

No modules on this course may be condoned.

### APPLIED BIOMEDICAL SCIENCE

#### Level 4 modules

**Mandatory:**
- 4007BMS Human Physiology in Health and Disease (20 credit)
- 4008BMS Biochemistry and Microbiology (20 credit)
- 4009BMS Cell and Molecular Biology (20 credit)
- 4011BMS Skills for Biomedical Science 1 (20 credit)
- 4012BMS Skills for Biomedical Science 2 (10 credit)
- 4010BMS Introduction to Biomedical Analysis (20 credit)
- CU Add+Vantage (10 credit)

#### Level 5 modules

**Mandatory**
- 5017BMS Biomedical Biochemistry (20 credit)
- 5018BMS Cell Biology and Haematology (20 credit)
- 5016BMS Infection and Immunity (20 credit)
- 5020BMS Contemporary Skills for Biomedical Science (20 credit)
- 5021BMS Research Skills for Biomedical Science (10 credit)
- 5019BMS Molecular Genetics (20 credit)
- CU Add+Vantage (10 credit)

**Professional Training year (COMPULSORY)**
- 5001BMS Professional Experience Sandwich Year (Zero credit)

#### Level 3

**Mandatory**
- 6016BMS Clinical Biochemistry (20 credit)
- 6017BMS Medical Microbiology (20 credit)
- 6018BMS Haematology and Immunology (20 credit)
- 6020BMS Independent project in Biomedical Science (20 credit)
- 6019BMS Research Design for Biomedical Science (10 credit)

**Plus choice of one from:**
- 6014BMS Cancer Biology (20 credit)
- 6015BMS Applied Human Genetics (20 credit)

No modules on this course may be condoned.

Year 1 consists of core biology theory modules. In addition, the Introduction to Biomedical Analysis module further enhances the breadth of analytical techniques that are relevant to Biomedical Science.
The modules 4011BMS and 4012BMS Skills in Biomedical Sciences include working in the National Health Service and expectations of the health professional as well as the process of registration. These modules ensure students are aware of the structure of the Biomedical Science profession and help them to decide if they wish to pursue the option of transferring to the Applied Biomedical Science course. These modules also include input from the Faculty Service User Group to inform students about the patient experience. *(HCPC SET 3.17)*

Year 2 contains the core biology relating to biomedical science (biomedical biochemistry, cell biology and pathology, haematology, microbiology and immunology), with further specialism into Molecular Genetics.

Students who wish to apply to undertake a placement year at the end of Year 2 attend ‘briefing sessions’ during the year. This includes aspects such as hospital organisation, working in a pathology laboratory, sample and data handling, health and safety and an overview of the Registration Training Portfolio.

Those students who have completed the mandatory modules for Biomedical Science at levels 4 and 5, and who have been successful in obtaining a one year placement in an approved training lab can transfer to Applied Biomedical Science on their return from placement. They are required to demonstrate satisfactory completion of the registration training portfolio.

Students who remain on Biomedical Science can also undertake a Professional Training Year if they wish. This could be in a laboratory that is not suitable for completion of the registration training portfolio and so would not be in a position to satisfy all the HCPC standards of proficiency during their placement.

Year 3 continues with core subject areas of advanced clinical biochemistry, medical microbiology, haematology and immunology, the investigative project and further choice of specialist option modules from cancer biology or human genetics.

The progression through the Professional Skills modules develops knowledge and skills including scientific communication (written and oral), study skills, research methods, information retrieval, IT, data processing and presentation and career development. Students also develop an understanding of the expectations of a health professional including the HCPC standards of conduct and ethics. The Professional Skills modules incorporate employability planning by helping students to understand competencies that employers require, enhancing personal development planning (PDP) and career management. Reflective practice is an important part of these modules and is also inherent in the training portfolio and the assessment for the professional training year.

Eligibility for interim awards by exit from the courses is in accordance with University regulations Mode E *(see section 13.5).*

### 13.2 Conditions for Progression and transfer

This complies with University Regulations Mode E.

#### 13.2.1 Conditions for transfer to Applied Biomedical Science

A Biomedical Science student may transfer to Applied Biomedical Science providing they meet all of the following conditions:

- They have passed ALL the Level 4 and Level 5 modules required for Applied Biomedical science *(see section 13.5)*
- Based on academic performance and interview students will compete for a limited number of one year training placements. The number of placements may vary from year to year and all students may not be successful in gaining a placement. There is no NHS funding for these placements.
- They have met conditions for entry into placement including an enhanced Disclosure and Barring Service (DBS) Check and immunisations. Students will be instructed about the DBS check and immunisations required during the placement briefing sessions and will have to provide documentation to show that these requirements have been met before starting the placement. *(HCPC SET 2.1, 2.3, 2.4)*

Successful applicants will be transferred to Applied Biomedical Science when they return from the placement year. Students on placement are enrolled as “in training” and do not pay tuition fees for the placement year.

#### 13.2.2 Progression to the Professional Training Year

1) Progression to the Professional Training Year is conditional upon the student having satisfied the prerequisites for a stage 3 programme.
2) In exceptional circumstances a student may be permitted to proceed to a Professional Training Year with failed modules that affect their progression rights. However, the placement should only go ahead with the agreement of all parties (in accordance with University Academic Regulations).

13.3 Condonement of failed modules

No modules are allowed condonement on this course.

13.4 Requirements for award

Standard University Requirements for minimum number of credits (single 20 credit modules) passed

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Level 1</th>
<th>Levels 2</th>
<th>Level 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honours degree</td>
<td>360 (18)</td>
<td>100 (5)</td>
<td>100 (5)</td>
<td>100 (5)</td>
</tr>
<tr>
<td>Unclassified Degree</td>
<td>300 (15)</td>
<td>100 (5)</td>
<td>80 (4)</td>
<td>80 (4)</td>
</tr>
<tr>
<td>Dip HE</td>
<td>240 (12)</td>
<td>100 (5)</td>
<td>100 (5)</td>
<td>-</td>
</tr>
<tr>
<td>Cert HE</td>
<td>120 (6)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Classification calculation for Honours Degrees

The standard University regulations for degree classification (Mode E regulations) apply.

For the Biomedical Science BSc (Hons) degree and Applied Biomedical Science (Hons) degree the project module 6020BMS MUST be included in the degree classification calculation.

13.5 Progression to alternative award and award cascade

a) Applied Biomedical Science (Hons) is HCPC approved and confers eligibility to apply to be HCPC registered. Biomedical Sciences (Hons) is accredited by the IBMS. It must be noted that no other awards in the award cascade (including Biomedical Science (non-honours) are approved or accredited. (HCPC SET 6.8)

b) Any student who has failed to qualify for their named award may be offered an alternative award by the Programme Assessment Board as detailed below provided that the individual satisfies the course and University regulations for these awards.

c) Any student on the sandwich course who fails, or is not credited with, a satisfactory Professional Training programme but who otherwise meets the conditions for the award of the named degree may be awarded a full-time degree or honours degree (as appropriate) in the relevant named degree. Students on Applied Biomedical Science who fail the placement would fall back to Biomedical Science (Hons)

The award cascade is as follows:

APPLIED BIOMEDICAL SCIENCE (HONS, HCPC APPROVED IBMS ACCREDITED)

Failure in the placement

BIOMEDICAL SCIENCE (HONS, IBMS ACCREDITED)

BIOMEDICAL SCIENCE (Non HONS, NOT ACCREDITED)
DIP HE
↓
CERT HE

Dip HE
**Introduction:** Dip HE is available as a fall back award. The PAB may offer the award of Dip HE to a student initially enrolled on the Biomedical Sciences Degree programme provided that the individual satisfies the University general regulations for a Dip HE and which must only include passes or APL in modules from within the Biomedical Science course programme.

Cert HE
**Introduction:** Cert HE is available as a fall back award. The PAB may offer the award of Cert HE to a student initially enrolled on the Biomedical Science Degree programme provided that, in the event, the individual satisfies the University general regulations for a Cert HE.

**Aegrotat Degrees**

The University regulations allow for award of aegrotat degrees in exceptional circumstances. An aegrotat award cannot be made in Applied Biomedical Science. An aegrotat award in Biomedical Science will not carry IBMS accreditation and would not allow graduates to apply for HCPC registration. (*HCPC SET 6.9*)
14 Support for Students and their Learning

Students attend an Induction Programme in the week preceding the beginning of the Academic Year. Each student has the opportunity to attend a number of academic, administrative and social events that include a welcome and introduction to the University, facilities and specifically the Faculty of Health and Life Sciences. There is an opportunity to be trained on CU on-line Moodle, a tour of the library and study skills development. A number of social activities are organised by the Student’s Union, including an introduction to University Clubs and Societies.

Each student is allocated a Personal Tutor who they will meet in induction week and regular meetings with the Personal Tutor are arranged throughout the first year. Additionally the Course Leader, Year Tutor, Module Leaders, lecturers provide a cascade of personal and pastoral support. Academic Staff are also regularly available in ‘Academic Surgeries’ where students can seek advice without prior appointment.

As part of the induction process all students in the University are issued with a student guide which details all facilities and support networks available to them, this information is also readily available on the University web site. www.coventry.ac.uk

The Faculty has excellent, well-equipped, specialist laboratory provision for teaching all the practical aspects of the course. Students have access to the facilities of the Lanchester library and to the University’s ‘Open Access’ computing laboratories, including local PC laboratories.

Further academic support is available from the University’s Maths Support Centre, which is part of SIGMA, a HEFCE designated centre of excellence in teaching and learning, providing University wide support for mathematics and statistics. The Centre for Academic Writing provides individual advice to students on written assignments.

The university has a new student centre providing advice to students on accommodation, student funding, careers and student employability, and also houses the academic registry. The department also has its own course administrator to deal directly with enrolment and registration.

The university provides excellent support for student’s health and well being with centres dealing with welfare and disability, counselling, spirituality and faith and a medical centre. There is also provision of nursery and sports facilities. The student union also provides recreational facilities and support and advice for students.

International Students may obtain further help from the student welfare team in the International Office.

Information about the wide variety of support to students is easily available to students from the Coventry University web site www.coventry.ac.uk and the student guide.

Student support mechanisms are consistent with the University policies on equality and diversity (including that on students with disabilities). Reasonable adjustments can be made to the teaching, learning, assessment and support of the course(s) to maximise accessibility to students with disabilities. Programme and Faculty specific support for students with special needs are actioned in conjunction with central provision and support from the Welfare and Disability Service.

Students have the option of undertaking a sandwich year in industry or a research or hospital laboratory (mandatory for Applied Biomedical Science in an approved training laboratory). Students are informed of the process for securing a placement in the first year of study and are prepared for this in the Professional Skills and Placement modules with general employability skills and specific instruction, for the applied course, relating to the requirements for registration. Thus students are supported in the preparation, application and securement of placement positions. The University also has a placement unit providing advice and support throughout the programme.

Students who undertake a Professional Training Year maintain contact with, and obtain support from, the University via the Professional Training Tutor and visiting University tutor. They will undergo an induction programme on starting the placement and complete a learning contract signed by the Placement Supervisor, Student and University Tutor. Students and placement supervisors receive a placement handbook highlighting the roles and responsibilities of all parties, full contact details and procedures in the event of problems. Visits by an assigned University Tutor occur three times a year and include separate discussions with Student and Supervisor and visit reports are completed. Students have continued access to CU Online teaching and learning resources and course developments. Further details on the placement arrangements are available in the student placement handbook.
Students can raise any problems they have with the course in a variety of ways including informal meetings with tutors. There are also formal mechanisms including a Student Forum. The University has a formal complaints procedure for students – see Academic Regulations (HCPC SET 13.3).

15 Criteria for Admission

Applicants should normally meet the entry requirements of the course as detailed on our University website: http://www.coventry.ac.uk/study-at-coventry/course-search/.

Non-standard applicants will be considered for entry to the course and will be at the discretion of the Course Director and the Admission Tutor.

Credit for Prior Learning

Accreditation for prior learning (APL) or prior experiential learning (APEL) may be granted for modules at the discretion of the Course Director providing that adequate evidence of learning is submitted by the student in accordance with University guidelines. APL/APEL will be limited to the maximum specified in University Regulations (HCPC SET 2.6).

16 Method for Evaluating and Enhancing the Quality and Standards of Teaching and Learning

The Programme is managed by the School of Life Sciences Board of Study of the Faculty/School of Health and Life Sciences.

The Programme Assessment Board (PAB) for Biomolecular Sciences is responsible for considering the progress of all students and making awards in accordance with both the University and course-specific regulations.

The assurance of the quality of modules is the responsibility of the Boards of Study which contribute modules to the programme.

External Examiners report annually on the programme and their views are considered as part of the annual quality monitoring process (CQEM). Details of the CQEM process can be found on the Registry’s web site. (HCPC SET 3.3)

Students are represented on the Student Forum, Board of Study and Faculty/School Board, all of which normally meet two or three times per year.

Student views are also sought through module and course evaluation questionnaires.

All programmes are subject to a major review involving subject experts external to the University, normally on a six year cycle. At these reviews the views of current and former students and employers are sought where appropriate.
17 Regulation of Assessment

University policy requires the internal moderation of all assessments. (HCPC SET 6.6)

External Examiners are appointed for all named University awards. The role of the External Examiner at module level is to ensure that academic standards are in line with national norms for the subject. External Examiners undertake the moderation of examination papers and assessment tasks, and view representative samples of work for the modules for which they have responsibility. At programme level, External Examiners help to ensure fairness in the consideration of student progression and awards. They have the right to comment on all aspects of the assessment system and participate as full members of the assessment boards.

A specific external examiner is appointed with named responsibility for the Biomedical Science and Applied Biomedical Science courses. In line with HCPC standard 6.11 we try to ensure that this person has HCPC registration (the current external examiner does have HCPC registration) **HCPC SET 6.11**

The Pass mark for all modules is 40%. This overall module mark may comprise more than one component (e.g. coursework and exam). The individual module descriptors give the precise pass criteria and the weighting of the component marks that contribute to the overall module mark.

On Undergraduate programmes, the Honours classification boundaries for First Class, Upper Second Class, Lower Second Class and Third Class are 70%, 60%, 50% and 40% respectively.
18 Indicators of Quality and Standards

The University has well established mechanisms for the review and evaluation of teaching, learning, assessment, the curriculum, and outcome standards. All courses within the Department of Applied Sciences and Health are closely mapped against established frameworks of discipline specific professional and, where possible, accrediting bodies. The BSc (Hons) Biomedical Science course follows the curriculum guidelines outlined by the Institute of Biomedical Science and the QAA benchmark statement for Biomedical Science.

Each course undergoes annual evaluation at course and module level via the following processes:

Course and Module Questionnaires
Emphasis is placed on student feedback; annual course and module questionnaires have consistently shown good and improving ‘overall ratings’ of the courses and modules in Biomolecular Sciences. Mid-module evaluation allows rapid identification of potential issues and equally areas of best practice that can be addressed and disseminated by course teams throughout the Department.

External Examiner Reports
The External Examiners’ reports have consistently accentuated the high quality, both of teaching provision and quality of graduates from all Biomolecular science courses within the School of Life Sciences. Such reports confirm the appropriate standard of assessments, level of subject-based material and development of key “transferable” skills.

Student Feedback.
The Department places emphasis on the student experience, with a key indicator of our success being the National Student Satisfaction Survey; for 2014 all courses within the Department received an average overall satisfaction rating of 94%.

Staff Teaching Qualifications
A high percentage of the staff delivering Biomolecular Science courses within the School of Life Sciences have higher degrees and hold the Higher Education Academy accredited Coventry University Certificate in Teaching and Learning in Higher Education or an equivalent qualification, or an award of teaching excellence. Staff are actively encouraged to pursue continuing professional development including membership of professional institutions, such as the Institute of Biomedical Science, the Association of Clinical Biochemists, the Society of Biology, the Physiological Society, and the Higher Education Academy. Annual staff appraisal and peer observation of teaching serves to share innovation and best practice in order to promote excellence in teaching.

Staff Research
Coventry University has an excellent reputation for evidence-based scientific research, with staff within the Department of Applied Sciences and Health possessing expertise and high quality publications in the following disciplines: biochemistry, cell biology, genomic and molecular biology, microbiology, pharmacology, and physiology. A number of staff are research active in the area of Biomolecular Science and have contributed to the Department’s success in the University’s 2014 Research Excellence Framework (REF) submission, and in 2014, assisted in establishing the Applied Biological and Exercise Faculty Research Centre (ABES FRC); areas of interest include cardiovascular pharmacology, cellular polarity and its role in aging and cancer, and the regulation of gene expression in genetic disease and medicine. All research within the Department helps to inform staff teaching and students have the chance to take part in staff research projects in their final year.

Employers The Department has excellent links with local employers; regular meetings of the Biomedical Science Employers Liaison committee, made up of local NHS staff, provide input to course management and development. Staff are actively involved in liaison with laboratory managers, training officers and other HEIs via the West Midlands Biomedical Science Training and Workforce Planning Group and the West Midlands regional training committee (South). Staff involved with placement visits and placement educators meet at training days to ensure currency of the curriculum and enhance the student placement experience. Articles about these regional “Train the Trainers” events delivered by ourselves, Wolverhampton and Aston universities have been published in the IBMS gazette.
19 Additional Information

Key sources of information about the course and student support can be found in
Student Guide
Faculty Handbook
Student Course Handbook
Module Guides
Module Information Directory (http://mid.coventry.ac.uk/)
CU On-line - Moodle
Study Support information is accessible from student services home page
Module Information Directory (http://mid.coventry.ac.uk/)

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities that are provided.

More detailed information on the learning outcomes, content, and teaching, learning and assessment methods of each module can be found in the Module Information Directory (MID), student module guide(s) and the course handbook.

The accuracy of the information contained in this document is reviewed by the University and may be verified by the Quality Assurance Agency for Higher Education.
<table>
<thead>
<tr>
<th>Module code</th>
<th>Module title</th>
<th>Credit value</th>
<th>Biomedical Science</th>
<th>Applied Biomedical Science</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Level 4</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4007BMS</td>
<td>Human Physiology in Health and Disease</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4008BMS</td>
<td>Biochemistry and Microbiology</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4009BMS</td>
<td>Cell and Molecular Biology</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4010BMS</td>
<td>Introduction to Biomedical Analysis</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4011BMS</td>
<td>Skills for Biomedical Science 1</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>4012BMS</td>
<td>Skills for Biomedical Science 2</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>A1XX</td>
<td>CU Add+Vantage module</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td><strong>Level 5</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5017BMS</td>
<td>Biomedical Biochemistry</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5019BMS</td>
<td>Molecular Genetics</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5018BMS</td>
<td>Cell Biology and Haematology</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5016BMS</td>
<td>Infection and Immunity</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5020BMS</td>
<td>Contemporary skills for Biomedical Science</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5021BMS</td>
<td>Research skills for Biomedical Science</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>A2XX</td>
<td>CU Add+Vantage module</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>5002BMS</td>
<td>Enhancement Year</td>
<td>0</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5001BMS</td>
<td>Professional Experience Sandwich Year</td>
<td>0</td>
<td>O</td>
<td>M</td>
</tr>
<tr>
<td><strong>Level 6</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6016BMS</td>
<td>Clinical Biochemistry</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>6017BMS</td>
<td>Medical Microbiology</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>6018BMS</td>
<td>Haematology &amp; Immunology</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>6014BMS</td>
<td>Cancer Biology</td>
<td>20</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>6015BMS</td>
<td>Applied Human Genetics</td>
<td>20</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>6019BMS</td>
<td>Research Design for Biomedical Science</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>6020BMS</td>
<td>Independent project in Biomedical Science</td>
<td>20</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>A3XX</td>
<td>CU Add+Vantage module</td>
<td>10</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

**Key**

M = Mandatory  O = Option
## 21 Curriculum Map

| Module codes | 4007BMS H PhysH&D | 4008BMS vBiochem & Micro | 4009BMS Cell & Mol | 4011BMS and 4012BMS Skills in Bio | 4010BMS In to BMSAnalys | 5017BMS Biom Bioch | 5019BMS Mol Genetics | 5018BMS Cell Biology and Haematology | 5016BMS Inf & Imm | 5020BMS and 5021BMS Skills | 6016BMS Clin Biochem | 6017BMS Med Micro | 6018BMS Haem & Imm | 6014BMS Cancer Biol | 6015 BMS Applied Human Genetics | 6019BMS Res design | 6020BMS Ind Project | Prof Training Year |
|--------------|-------------------|--------------------------|-------------------|-----------------------------------|-------------------------|------------------|---------------------|--------------------------|-------------------|-----------------------------|------------------|------------------|------------------|-------------------|-------------------|---------------------|-------------------|-------------------|---------------------|
| Knowledge and Understanding | | | | | | | | | | | | | | | | | | | |
| Cognitive (Thinking) Skills | | | | | | | | | | | | | | | | | | | |
| Practical Skills | | | | | | | | | | | | | | | | | | | |
| Transferable Skills | | | | | | | | | | | | | | | | | | | |

### Intended learning outcomes

<table>
<thead>
<tr>
<th>Module codes</th>
<th>KU1</th>
<th>KU2</th>
<th>KU3</th>
<th>KU4</th>
<th>KU5</th>
<th>KU6</th>
<th>KU7</th>
<th>KU8</th>
<th>KU9</th>
<th>KU10</th>
<th>KU11</th>
<th>CS1</th>
<th>CS2</th>
<th>CS3</th>
<th>PS1</th>
<th>PS2</th>
<th>PS3</th>
<th>TS1</th>
<th>TS2</th>
<th>TS3</th>
<th>TS4</th>
<th>TS5</th>
<th>TS6</th>
<th>TS7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4007BMS H PhysH&amp;D</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4008BMS vBiochem &amp; Micro</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4009BMS Cell &amp; Mol</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4011BMS and 4012BMS Skills in Bio</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4010BMS In to BMSAnalys</td>
<td></td>
</tr>
<tr>
<td>5017BMS Biom Bioch</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5019BMS Mol Genetics</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5018BMS Cell Biology and Haematology</td>
<td></td>
</tr>
<tr>
<td>5016BMS Inf &amp; Imm</td>
<td></td>
</tr>
<tr>
<td>5020BMS and 5021BMS Skills</td>
<td></td>
</tr>
<tr>
<td>6016BMS Clin Biochem</td>
<td></td>
</tr>
<tr>
<td>6017BMS Med Micro</td>
<td></td>
</tr>
<tr>
<td>6018BMS Haem &amp; Imm</td>
<td></td>
</tr>
<tr>
<td>6014BMS Cancer Biol</td>
<td></td>
</tr>
<tr>
<td>6015 BMS Applied Human Genetics</td>
<td></td>
</tr>
<tr>
<td>6019BMS Res design</td>
<td></td>
</tr>
<tr>
<td>6020BMS Ind Project</td>
<td></td>
</tr>
<tr>
<td>Prof Training Year</td>
<td></td>
</tr>
</tbody>
</table>

### Notes
- $X$ indicates an intended learning outcome is met.
- $-\text{-}$ indicates an intended learning outcome is not met.
- $\text{Dependent on specific project}$ indicates the outcome depends on the specific project.
- $\text{Dependent on specific placement}$ indicates the outcome depends on the specific placement.

---

18
### 21 Capabilities (Skills) Map

<table>
<thead>
<tr>
<th>Module codes</th>
<th>Learning to Learn</th>
<th>Working with others</th>
<th>Problem Solving and Innovation</th>
<th>Numeracy</th>
<th>IT and Online Learning</th>
<th>Communication</th>
<th>Career Management</th>
<th>Information Management</th>
<th>Personal Development Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>4007BMS H Yhys in H&amp;D</td>
<td>PA</td>
<td>PA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TPA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>4008BMS Biochem &amp; Micro</td>
<td>PA</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>TPA</td>
<td>TPA</td>
<td>PA</td>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>4009BMS Cell &amp; Mol</td>
<td>PA</td>
<td>P</td>
<td>PA</td>
<td>PA</td>
<td>TPA</td>
<td></td>
<td>PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4011BMS and 4012BMS Skills in Bio</td>
<td>TPA</td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td></td>
</tr>
<tr>
<td>4010BMS In to BM Analysis</td>
<td>TP</td>
<td>TP</td>
<td>TPA</td>
<td>TPA</td>
<td>TA</td>
<td>TPA</td>
<td>t</td>
<td>TPA</td>
<td>TP</td>
</tr>
<tr>
<td>A1XX CU Advantage</td>
<td>TPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td></td>
</tr>
<tr>
<td>5017BMS Biom Bioch</td>
<td>PA</td>
<td></td>
<td></td>
<td></td>
<td>TPA</td>
<td></td>
<td>PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5019MS Molecular Genetics</td>
<td>PA</td>
<td></td>
<td>TPA</td>
<td>PA</td>
<td>TPA</td>
<td></td>
<td>PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5018BMS Cell Biology and Haematology</td>
<td>PA</td>
<td>PA</td>
<td></td>
<td></td>
<td>TPA</td>
<td></td>
<td>PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5016BMS Inf &amp; Imm</td>
<td>P</td>
<td>P</td>
<td>TP</td>
<td></td>
<td></td>
<td></td>
<td>PA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5020BMS and 5021BMS Cant Skills</td>
<td>TPA</td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td></td>
</tr>
<tr>
<td>A2XX CU Advantage</td>
<td>TPA</td>
<td></td>
<td></td>
<td></td>
<td>TPA</td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td></td>
</tr>
<tr>
<td>Prof Training Year</td>
<td>PA</td>
<td>PA</td>
<td></td>
<td></td>
<td>TPA</td>
<td></td>
<td>TP</td>
<td>PA</td>
<td>PA</td>
</tr>
</tbody>
</table>
### Capability Outlines (from the Code of Practice for Academic and Skills Development)

#### Learning to Learn
Students should be ready to accept responsibility for their own independent learning. They should also be able to reflect on their learning and appraise their capabilities and achievements. Students should also be able to identify their individual needs for effective learning.

#### Working with Others
Students should be able to work effectively as part of a group, and respect the dignity, rights and needs of others.

#### Problem Solving and Innovation
Students should be able to use problem-solving skills in a variety of practical situations. They should be able to demonstrate creativity, flexibility, perception, decisiveness, confidence and an awareness of values.

#### Numeracy
Students should be able to interpret, analyse and present numerical data.

#### IT and Online Learning
Students should be able to use computer-based systems for learning, communicating, collaborating with peers and tutors, and working with data.

#### Communication
Students should be able to communicate effectively in appropriate forms in a wide variety of situations.

#### Career Management
Students should appreciate the values, culture, structure and process of work organisations relevant to their area of study. Students should also appropriately match their experience and academic achievements to employer expectations.

#### Information Management
Students should be able to carry out research relevant to their field of study by retrieving and using information drawn from a variety of resources.

### Module Codes and Capability Outlines

<table>
<thead>
<tr>
<th>Module codes</th>
<th>Learning to Learn</th>
<th>Working with others</th>
<th>Problem Solving and Innovation</th>
<th>Numeracy</th>
<th>IT and Online Learning</th>
<th>Communication</th>
<th>Career Management</th>
<th>Information Management</th>
<th>Personal Development Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>6016BMS Clin Biochem</td>
<td>PA</td>
<td>PA</td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>6017BMS Med Microbi</td>
<td>PA</td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>6018BMS Haem&amp; Imm</td>
<td>PA</td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>6014BMS Cancer Biol</td>
<td>PA</td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>6015BMS App Human Genetics</td>
<td>PA</td>
<td></td>
<td>P</td>
<td>P</td>
<td>P</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>6019BMS Res design</td>
<td>TPA</td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA TPA</td>
<td>TPA TPA</td>
<td>TPA TPA</td>
<td>TPA TPA</td>
</tr>
<tr>
<td>6020BMS Ind Project</td>
<td>PA</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td>PA</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
<tr>
<td>A3XX CU Advantage</td>
<td>TPA</td>
<td></td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>TPA</td>
<td>PA</td>
<td>PA</td>
<td></td>
</tr>
</tbody>
</table>

Key: T=Taught, P=Practiced, A=Assessed

The Code of Practice for Academic and Professional Skills Development requires that each of the capabilities be demonstrated at least once during the programme.
Personal Development Planning – Students should be able to demonstrate self-awareness, set personal goals and record achievement.

Capabilities developed through the Add+vantage Scheme

In all full-time UK based undergraduate courses students will undertake at least one 10 credit Add+vantage module in each of the three years of their course. These Add+vantage modules will develop the following generic capabilities:

- Problem Solving Skills
- Action Planning and Organising
- Written and Oral Communication
- Questioning and Listening

Employability competencies and career management skills will be introduced in each Add+vantage module. The following personal qualities related to employability will be addressed in each of the Add+vantage modules:

- Achievement orientation
- Initiative (Creativity)
- Self Confidence
- Decisiveness
- Reflectiveness
- Adaptability/Flexibility
- Influencing
- Career Management Skills