Course Specification

MEng Aerospace Systems Engineering
BEng (Hons) Aerospace Systems Engineering
EECU092

Faculty of Engineering, Environment and Computing
School of Mechanical, Aerospace and Automotive Engineering
Academic Year: 2020/2021

Please note: This specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities that are provided.

We regularly review our course content, to make it relevant and current for the benefit of our students. For these reasons, course modules may be updated.

More detailed information on the learning outcomes, content, and teaching, learning and assessment methods of each module can be found in the Module Information Directory (MID), student module guide(s) and the course handbook.

The accuracy of the information contained in this document is reviewed by the University and may be verified by the Quality Assurance Agency for Higher Education.
1. Introduction
This course specification describes the BEng/MEng Aerospace Systems Engineering course at Coventry University. This course sits in the School of Mechanical, Aerospace and Automotive Engineering which has global reputation for excellent teaching, outstanding student experience and exciting research utilising state-of-the-art building with modern equipment and student facilities.

The Aerospace Systems Engineering course gives the students the opportunity to develop a thorough understanding of the fundamental principles of mechanical, electrical and systems engineering and how this knowledge is applied in the aerospace industry. The course delivers the material in an integrated way to reflect the multi-disciplinary nature of the aerospace systems. The course is centred upon systems for aerospace vehicles and the requirement to design total system solutions. The variety of teaching, learning and assessment strategies are designed to promote and facilitate an independent systems engineer who has the ability to work effectively, efficiently and collaboratively within an aerospace engineering company.

The programme is structured to assimilate a variety of academic backgrounds and to provide a basic grounding in the key aeronautical principles in the first year and is reinforced with the use of practical laboratory sessions using a full-sized aircraft, wind tunnels and a full motion flight simulator. In the second year, the analysis and design aspects of individual aerospace systems continue, but to a much greater depth. This includes flight dynamics where the student complete an flight analysis laboratory on-board an aircraft. Employability skills workshops are embedded within the second year programme by the School's award winning placement team to support student in their search for a placement year. The Faculty has strong links with industry and our students have had placements with companies, including Airbus, BAE, Collins Aerospace, GE Aviation, MBDA, Meggitt and Rolls-Royce.

Level 6 of the programme focuses on the deepening the analysis of aerodynamic, propulsion and avionics in the technical modules. Along side of which, the students complete a year long integrated system design exercise in the third year, which is typically that of a design and validation of a Remotely Piloted Air Vehicle.

The MEng route is designed for high achieving students to continue their studies and to develop technical skills, application and leadership to meet the full academic requirements for chartered engineering status.

Upon completion of the programme, graduates can expect to find employment in a variety of industries. There is a growing demand from the aerospace industry for aerospace systems engineers who are capable of designing and analysing systems. Once employed there are will be great opportunities for an accelerated promotion through either a technical or management route who are able to embrace the multi-disciplinary aspects of aerospace systems engineering.
2 Available Award(s) and Modes of Study

<table>
<thead>
<tr>
<th>Title of Award</th>
<th>Mode of attendance</th>
<th>UCAS Code</th>
<th>FHEQ Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEng Aerospace Systems Engineering</td>
<td>FT 4 years</td>
<td>H410</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>SW 5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT 6 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEng Honours Aerospace Systems Engineering</td>
<td>FT 3 years</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SW 4 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PT 6 years</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Awarding Institution/Body	Coventry University
4 Collaboration	None
5 Teaching Institution and Location of delivery	Coventry University
6 Internal Approval/Review Dates	Date of latest review: March 2019 (Periodic Review)
Date of next review: 2028/2029	
7 Course Accredited by	
8 Accreditation Date and Duration	
9 QAA Subject Benchmark Statement(s) and/or other external factors	
The Subject Benchmark Statements for Engineering are relevant to this programme. Subject Benchmark statements can be found at: http://www.qaa.ac.uk/academicinfrastructure/benchmark/default.asp	
The programme is designed to provide an education appropriate to future registration with the Engineering Council as a Chartered Engineer.	
10 Date of Course Specification	September 2019
11 Course Director	Dr Tosha Nembhard
12 Outline and Educational Aims of the Course

The programme aims to enable the student to develop a thorough understanding of the fundamental principles of systems engineering and how this knowledge is applied in the Aerospace Industry. The programme is centred upon systems for aerospace vehicles and is primarily based upon mechanical systems, but provides students with good knowledge of electrical and electronic engineering to be able to address the total system solution. The requirements of UK-SPEC have been key in the design of the programme to achieve accreditation from the Royal Aeronautical Society. The programme meets all the educational requirements necessary for IEng registration and partially meets the educational requirements for CEng registration.

The BEng programme educational aims include:

- To provide students with a balance of knowledge, skills and personal qualities so that, on graduation and after completion of an appropriate matching section of study, they will have completed the academic formation appropriate to eventual registration with the Engineering Council as Chartered Engineer.
- To develop a graduate who will have the commitment to ensure continued professional development and to reflect upon personal performance.
- To develop aerospace engineers with the skills of problem-solving, innovation, flexibility and resourcefulness to meet the changing demands of the aerospace industry.
- To present Aerospace Systems Engineering knowledge in an integrated way to reflect the multiplicity and interaction between many types of scientific, commercial, manufacturing and managerial skills and knowledge, necessary to produce a successful engineering product or system.
- To further the University mission with respect to academic environment, equal opportunities, access, curricula, flexible patterns of study and sandwich routes.

The MEng programme educational aims include all those outlined above for the BEng programme, and in addition:

- To provide students with a programme to enhance their versatility and depth of understanding to enable them to deal with new and unusual challenges in the aerospace industry
- To encourage creativity and the ability to innovate
- To develop a sound understanding of the commercial context of engineering and of the commercial and technical risks associated with innovation
- To develop a set of skills that equip them to progress rapidly to positions of responsibility providing technical, managerial and entrepreneurial leadership in specialist or inter-disciplinary projects in the aerospace industry.
- To provide an awareness of the wider responsibilities to society specially in terms of issues relating to ethics, health, safety and sustainability of engineering innovation.
13 Course Learning Outcomes

On successful completion of the course a student will be able to

BEng Aerospace Systems Engineering

1. Demonstrate knowledge and understanding of scientific and mathematical principles and their application to design and analyse aerospace system problems of increasing complexity. (RAeS SM)
2. Apply engineering principles to analyse multidisciplinary system problems using quantitative, computational and modelling tools. (RAeS EA)
3. Demonstrate a comprehensive understanding of design, design processes/drivers and lifecycle management in developing solutions that meet customer requirements. (RAeS D)
4. Clearly and appropriately communicate complete solutions using both written and oral formats. (RAeS D)
5. Demonstrate awareness of the need for professional and ethical conduct in commercial and social contexts, show an understanding of sustainable development and the regulations governing engineering activities in order to appraise risk and intellectual property. (RAeS D, EL)
6. Critically assess data and information that may be uncertain or incomplete using practical laboratory skills and experimental research and evaluate their impact on design. (RAeS D, P)
7. Demonstrate knowledge of a range of aerospace products, processes, materials and industry standards with an appreciation of their limitations. (RAeS P)
8. Contribute to a team with the necessary planning, monitoring, adaptability, drive and leadership to achieve the required objectives of aerospace related project. (RAeS EL, P, G)
9. Develop independent learning and problem-solving skills appropriate to current and future study and employment. (RAeS G)

MEng Aerospace Systems Engineering (in addition to above)

10. Demonstrate a comprehensive understanding and limitations of scientific, mathematical and computational principles together with an awareness of emerging technologies to support the analysis of holistic solution of an engineering problem. (RAeS SM1m-6m)
11. Critically apply and evaluate engineering analysis methods when solving complex problems and assess their limitations, especially when applied to new or unfamiliar technology. (RAeS EA1m,EA5m,EA6m)
12. Understanding of the design and lifecycle management of an novel aerospace product, including change, risk and IP management and key business drivers. (RAeS D7m,D8m, EL3m,6m,7m)
13. Demonstrate leadership, conflict resolution, communication and work planning skills within a team (RAeS G1, G4)
14. Show an advanced level knowledge of a wide range of engineering components and materials with an appreciation of their limitations and likely developments together with commercial and industrial constraints. (RAeS P2m, P9m, 10m)
14 Course Structure and Requirements, Levels, Modules, Credits and Awards
Modules at levels 4, 5 and 6 are shared between MEng and BEng Aerospace Systems Engineering students with only MEng students studying modules at level 7.

The programme may be studied in the following modes of attendance:
- Full-time over three years of study for BEng.
- Sandwich with an industrial training placement being taken for one year between the second and third years of study.
- Sandwich with a year abroad being taken between the second and third years of study at Coventry University.
- Part-time. The programme can be studied in part-time mode over a duration of 6 years by attending the modules timetabled for full-time students.

14.1 Add+Vantage Scheme
As required by University regulations, students will take one 10 credit Add+Vantage module at each of Levels 4 – 6 of their course. The Add+Vantage scheme is a University initiative for broadening students’ studies. There is a large collection of 10 credit modules in a wide variety of areas, many linked to ‘graduateness’ and ‘employability’. The scheme includes languages, law, advanced IT and mathematical skills.

14.2 Progression through course
To progress from one level to the next, students must normally pass all modules. Students who fail to pass sufficient modules to progress will be considered under the Academic Regulations. The outcome will be at the discretion of the Programme Assessment Board (PAB).

The following table summarises the effect of these with the course curriculum.

<table>
<thead>
<tr>
<th>Credit level</th>
<th>Module Code</th>
<th>Title</th>
<th>Credit Value</th>
<th>Mandatory/Optional</th>
<th>Course Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4021MAA</td>
<td>Fluids Mechanics and Aerodynamics</td>
<td>20</td>
<td>M</td>
<td>1,2,4,5,6,7,8</td>
</tr>
<tr>
<td>4</td>
<td>4022MAA</td>
<td>Thermodynamics, Propulsion & Aircraft Systems</td>
<td>20</td>
<td>M</td>
<td>1,2,6,8,9</td>
</tr>
<tr>
<td>4</td>
<td>4023MAA</td>
<td>Solid Mechanics & Aircraft Structures</td>
<td>20</td>
<td>M</td>
<td>1,2,3,6,7,8,9</td>
</tr>
<tr>
<td>4</td>
<td>4024MAA</td>
<td>Introduction to CAD & Professional Skills</td>
<td>10</td>
<td>M</td>
<td>1,2,3,5,6,7,8</td>
</tr>
<tr>
<td>4</td>
<td>4038CEM</td>
<td>Engineering Mathematics 1</td>
<td>20</td>
<td>M</td>
<td>1,2,9</td>
</tr>
<tr>
<td>4</td>
<td>4066CEM</td>
<td>Introduction to Aerospace Electronics</td>
<td>20</td>
<td>M</td>
<td>1,2</td>
</tr>
<tr>
<td>4</td>
<td>Add+Vantage</td>
<td></td>
<td>10</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5021MAA</td>
<td>Aerospace Systems Engineering</td>
<td>20</td>
<td>M</td>
<td>1,2,3,4,5,6,7,8</td>
</tr>
<tr>
<td>5</td>
<td>5022MAA</td>
<td>Avionics Systems I</td>
<td>20</td>
<td>M</td>
<td>1,2,7,8</td>
</tr>
<tr>
<td>5</td>
<td>5023MAA</td>
<td>Flight Dynamics & Control</td>
<td>20</td>
<td>M</td>
<td>1,2,6,7</td>
</tr>
<tr>
<td>5</td>
<td>5024MAA</td>
<td>Mechanics & Thermofluids</td>
<td>20</td>
<td>M</td>
<td>1,2</td>
</tr>
<tr>
<td>5</td>
<td>5025MAA</td>
<td>Introduction to Engineering Simulation</td>
<td>10</td>
<td>M</td>
<td>2,4,7</td>
</tr>
<tr>
<td>5</td>
<td>5049CEM</td>
<td>Engineering Mathematics 2</td>
<td>20</td>
<td>M</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Add+Vantage</td>
<td></td>
<td>10</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5012CEM</td>
<td>Professional Training</td>
<td>0</td>
<td>O</td>
<td>4,9</td>
</tr>
<tr>
<td>5</td>
<td>5013CEM</td>
<td>Study Abroad</td>
<td>0</td>
<td>O</td>
<td>4,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6010MAA</td>
<td>Individual Project Preparation</td>
<td>10</td>
<td>M</td>
<td>3,4,5,7,9</td>
</tr>
<tr>
<td>Level</td>
<td>Code</td>
<td>Course Title</td>
<td>Hours</td>
<td>Type</td>
<td>Module Language</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>-------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>6</td>
<td>6020MAA</td>
<td>Individual Project Realisation</td>
<td>20</td>
<td>M</td>
<td>1,2,3,4,5,6,7,9,11</td>
</tr>
<tr>
<td>6</td>
<td>6021MAA</td>
<td>Aerospace System Design</td>
<td>20</td>
<td>M</td>
<td>1,2,3,4,5,6,7,8,9</td>
</tr>
<tr>
<td>6</td>
<td>6022MAA</td>
<td>Aerospace System Validation & Verification</td>
<td>20</td>
<td>M</td>
<td>1,2,3,4,5,6,7,8,9,11</td>
</tr>
<tr>
<td>6</td>
<td>6023MAA</td>
<td>Propulsion Systems & Aerodynamics</td>
<td>20</td>
<td>M</td>
<td>1,2,3,4,9</td>
</tr>
<tr>
<td>6</td>
<td>6024MAA</td>
<td>Avionics Systems II</td>
<td>20</td>
<td>M</td>
<td>1,2,3</td>
</tr>
<tr>
<td>6</td>
<td>Add+Vantage</td>
<td></td>
<td>10</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7131MAA</td>
<td>Advanced CFD</td>
<td>20</td>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7132MAA</td>
<td>Aerospace Structural and Material Analysis</td>
<td>20</td>
<td>M</td>
<td>10,13</td>
</tr>
<tr>
<td>7</td>
<td>7133MAA</td>
<td>Advanced Propulsion Systems</td>
<td>20</td>
<td>M</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>7134MAA</td>
<td>Aerospace Systems Integratoin</td>
<td>20</td>
<td>M</td>
<td>10,11,12</td>
</tr>
<tr>
<td>7</td>
<td>7135MAA</td>
<td>Group Project - Aerospace Systems Integration</td>
<td>20</td>
<td>M</td>
<td>10,11,12</td>
</tr>
<tr>
<td>7</td>
<td>7146MAA</td>
<td>Business Innovation and Sustainability</td>
<td>20</td>
<td>M</td>
<td>5,12</td>
</tr>
</tbody>
</table>

14.3 Professional Training or Study Abroad and the award of Sandwich degrees
Students may undertake a year out in industry or a year studying abroad with support of the Erasmus exchange scheme, between levels 5 and 6 of their course. Students will be enrolled onto relevant modules which they must take and pass to achieve a Sandwich (SW) degree (5013CEM) or a Full Time with Study Abroad (FY) degree (5013CEM).

14.4 Conditions for the award of an honours degree
The award of a Honours or Unclassified degree from this course requires a student to achieve the minimum module counts specified in the University general regulations. Honours classification is based on the calculation method described in the University Academic Regulations.

Furthermore, 6010MAA, 6020MAA, 6021MAA and 6022MAA must be used in the classification calculation to obtain the BEng (Hons) Aerospace Systems Engineering degree with the final year project and final year group design modules (6010MAA, 6020MAA, 6021MAA and 6022MAA) passed together at first attempt.

Students can be offered progression onto the MEng route on completion of Level 6, normally on the condition of achieving 360 credits. Typically with minimum average module marks of 60% at both Level 5 and 6 and with no individual module having a module mark below 50%.

Classification is based on the calculation method described in the University Academic Regulations. Furthermore, 7134MAA and 7135MAA must be used in the classification calculation. Single award given for MEng award.

14.5 Conditions for fallback award
Students failing to meet the award requirements of the programme will be considered for alternative awards (BEng Aerospace Systems Engineering, Diploma of Higher Education, and Certificate of Higher Education) for which they satisfy the module count and other requirements.

The requirements for the awards of BEng Aerospace Systems Engineering, Diploma of Higher Education and Certificate of Higher Education are specified in the University Academic Regulations.
Cascade of Awards:
BEng Programme

BEng(Hons) Aerospace Systems Engineering
(360 credits with all project modules passed at first attempt)
↓
BEng Aerospace Systems Engineering
(300 credits with 60 credits which must include 6010MAA, 6020MAA, 6021MAA, 6022MAA, 6023MAA or 6024MAA.)
↓
Diploma of Higher Education
(240 credits)
↓
Certificate of Higher Education
(120 credits)

MEng Programme

MEng Aerospace Systems Engineering
(480 credits)
↓
BEng(Hons) Aerospace Systems Engineering
(360 credits)
↓
BEng Aerospace Systems Engineering
(300 credits with 60 credits which must include 6010MAA, 6020MAA, 6021MAA, 6022MAA, 6023MAA or 6024MAA.)
↓
Diploma of Higher Education
(240 credits)
↓
Certificate of Higher Education
(120 credits)
15 Criteria for Admission and Selection Procedure

UCAS entry profiles may be found at http://www.ucas.ac.uk.

Candidates for admission to the programme will normally be expected to:

a) Satisfy the general admission requirements of the University as specified in the Academic Regulations. This requires achieving 5 GCSE passes at grade 5 or above including Maths and English, or equivalent qualifications.

b) Demonstrate a competence to study using the English Language. For overseas entrants the English language requirement is IELTS grade 6 or equivalent.

c) Meet the academic entry requirements to the programme by achieving equivalent qualifications amounting to UCAS tariff points as stated above in UCAS entry profiles (or http://www.coventry.ac.uk/study-at-coventry/course-search/). Typical offers would include the following:

- A-Levels to include Mathematics and one from Physics, Chemistry, Design Technology, Further Mathematics, Electronics, Computing, ICT, Engineering or Product Design. Excludes General studies. A BTEC National Certificate or Diploma in an appropriate subject, including maths and further maths units.
- Scottish Highers and Advanced Highers, to include at least one subject from Maths, a Physical Science, Design and Technology or similar.
- Other qualifications – for details of other acceptable qualification, please see http://www.coventry.ac.uk/undergraduate

This section summarises the main admissions requirements for entry to level 1 of the programme from United Kingdom applicants. Applications involving other UK or overseas qualifications, mature candidates, or for direct entry to later levels of the programme from candidates with experience, are welcome and will be considered on their merit.

16 Academic Regulations and Regulations of Assessment

This Course conforms to the standard University Academic Regulations Undergraduate Mode E.
17 Indicators of Quality Enhancement

The following are key indicators of quality and standards:

- The programme has been designed in accordance with the relevant QAA benchmark statements, UK standards for Professional Engineering Competence and Royal Aeronautical Society (RAeS) accreditation guidance for the subject and professional body requirements.

- Accreditation is sought from relevant organisations to ensure the course meets professional standards. Sections 7 and 8 detail the current accreditations held.

- The latest statistical data on the quality of the subject area, results from the National Student Survey, and typical graduate employment rates and destinations may be accessed at www.unistats.com.

- The School engages in a wide variety of research and attracts governmental funding. The School conducts themed research within three Faculty Research Centres (FRCs).

- The Institute for Future Transport and Cities builds on faculties strengths in low-carbon transportation technologies, crash worthiness, human factors and vehicle autonomy.

- The Centre for Fluid and Complex Systems undertakes fundamental and applied research into industrially-relevant complex flows.

- The Centre for Manufacturing and Materials Engineering takes an integrative approach to fabrication and manufacturing, focussing on the three strands of Materials, Processes, and Products, underpinned by expertise in Metrology, Modelling, and Advanced Experimentation.

- The Institute for Advanced Manufacturing and Engineering (AME), which is supported by the Higher Education Funding Council for England’s Catalyst Fund, is a collaboration between Coventry University and Unipart Manufacturing Group. AME has built a bespoke ‘Faculty on the Factory Floor’ at Unipart’s manufacturing site in the heart of Coventry. This forms the focal point of activity and houses state-of-the-art robotic automation, forming, joining, analysis and simulation, metrology and product verification technology.

- The School has excellent links with local employers. Regular meetings of the School Advisory Board, made up of local employers, provide input to course management and development. Student projects are often informed by working with industrial and research partners.

The report of QAA’s Institutional Audit undertaken in February 2015 confirmed that Coventry University meets the UK expectations regarding:

- setting and maintenance of the academic standards of awards;
- quality of student learning opportunities;
- quality of the information about learning opportunities;
- enhancement of student learning opportunities
18 Additional Information
Enrolled students have access to additional, key sources of information about the course and student support including,
Faculty Student handbook
Course Handbook
Module Guides
Module Information Directory
Student Portal
EEC Student Portal

Induction
Students engage in a series of induction events, ‘Student Essentials’ over the first six weeks of their programme. The Student Essentials encompass a number of academic, administrative and social events including a welcome and introduction to the university, the facilities and the faculty. As part of the Student Essentials induction events, all students are directed to an online student handbook and a course handbook which provides key information.

Buildings and Equipment
The faculty is mainly based within two buildings, the Engineering and Computing building and the Sir John Laing building, all of which are equipped with specialist equipment to support students. This includes a high performance engineering centre which houses a full size harrier, three further simulators, a wind and smoke tunnel, civil engineering specialist testing equipment, a range of CNC machinery, a laser workshop and a 3D Geoscience Information Laboratory.

Student Support
Students will be allocated an Academic Personal Tutor who will provide on-going academic support throughout the year. Students are expected to attend regular meetings with their tutor within a timetabled group meeting. Support is also available via Course Directors, who are available to advise students on academic and pastoral issues. Times that Course Directors are available to meet with students will be shown on course Moodle webs and also their location. Module Leaders and the associated module team are available to offer support at module level. Again Module Leaders advertise their contact times on module Moodle webs and also their location. Outside of office hours, you can also email any member of academic staff.

The Faculty Registry team support you through your studies, providing information and guidance on the rules and procedures that affect your academic progress. Faculty Registry can help you deal with problems you may be having with academic life and help you understand the University’s academic processes and regulations. They have a detailed understanding of the curriculum structures and other specialist support that is available to you within the University.

The Faculty Registry have offices located close to the main Student Information Points/Receptions. Students can drop by the Registry support desk which is next to reception in the ECB; Monday – Friday from 1000 – 1600. Or Students can contact Registry staff via the Reception desks in the EC building or the John Laing building; Monday – Friday from 0830 – 1700. This team can also be emailed FacultyRegistry.eec@coventry.ac.uk at any time and this will be passed to each student’s dedicated course support team to respond to.

The Faculty Learning Support Co-ordinators and Learning Support Tutors work closely with the Disabilities Office in the Hub and Course Teams within the Faculty. Reasonable adjustments will be made for students with disabilities who have registered with the University as requiring additional support with their studies.

The University has an excellent record on widening access and welcomes students from all backgrounds and neighbourhoods with low participation in higher education.

Students have access to a Maths Support Centre called SIGMA based in the Library. The Centre for Academic Writing (CAW) can also provide support on topics ranging from how to organise an academic argument to improving grammar and sentence structure. The university provides support for students’ health and wellbeing which includes a Medical Centre, Spirituality and Faith Centre, Counselling and Mental Health Service, Sports and Recreational Centre and a Nursery.
The Student’s Union also provide recreational facilities, support, and advice for students. International Students may obtain further help from the student welfare team in the International Student Centre.

There is a careers service where qualified consultants are available to help students think about the issues they face as they move through University studies and prepare for employment.

Students may seek to undertake a relevant professional/international placement year between levels 5 and 6 of an undergraduate degree. This opportunity is encouraged to provide students with the depth of experience that such an opportunity affords. Assistance with acquiring a relevant placement is offered by the Faculty’s Placement Team – EEC Futures. Within each School there is also an Industrial Placement Tutor who will be identified to you during your course.

Library – There is also additional support for all students learning within the Lanchester Library. The library hosts both physical books, administers central access to electronic resources (e-books and electronic journals) as well as document supply (obtaining books or journal articles from other universities).