Plasticity fundamentals: using nano-indentation to...

Campus Map

Working with Coventry University

Working at Coventry University

Coventry University is a diverse and exciting place to work and we share the enthusiasm of our staff and students to be the best at whatever they choose to do. As one of the City’s biggest employers, we offer some impressive benefits for our staff and are committed to delivering the very best opportunities. We have a comprehensive training, personal and professional development programme that provides our employees with the skills to enhance their performance in the workplace and grow in their careers. There are pension schemes, a generous holiday allowance and flexible working opportunities as well as lifestyle benefits including childcare vouchers, discounted membership to the £4 million sports and recreation centre and schemes such as Cycle to Work and the CU Car Share initiative.

View current job vacancies.


Staff portal

Access the central point of information for all staff across the University.


Student Portal

Check your assessments, access Solar and get course information.

banner image

Plasticity fundamentals: using nano-indentation to ‘fingerprint’ point defects in metals

Eligibility: UK/EU/International

Award Details: £15,000 bursary plus tuition fees 

Duration: Full Time - 3 years 6 months fixed term

Application deadline: This opportunity will only remain open until a suitable candidate is identified- early application is therefore advised. Standard University research application closing dates apply

Informal enquiries are essential before application; contact Xiaodong Hou to discuss this opportunity.

Congratulations on taking your first steps toward a Research Degree with Coventry’s Faculty of Engineering, Environment and Computing. As an ambitious and innovative University, we’re investing an initial £100m into our new research strategy, ‘Excellence with Impact’. Through original approaches from world-leading experts, we’re aiming for our research to make a tangible difference to the way we live. As a research student you are an integral part of Coventry’s lively and diverse research community and contribute to our reputation for excellence. With our exceptional facilities and superb support mechanisms you are afforded every opportunity for academic success.

The Project

Research into the strength and damage resistance of materials is an internationally “hot” topic, driven by the need to develop stronger, lighter, tougher metallic components. Recent research has shown that small beams/fibres/crystals are stronger and such ‘size-effects’ can change the strength of a material by an order of magnitude. Test size similarly affects the measurement of strength - “smaller is harder”. The ability to vary the test size in nano-indentation and study the interaction with local plasticity has the potential to create new indentation measurement methods that are sensitive to local plasticity length scale and type.

Total indentation hardness response is a function of material yield stress, determined by a combination of the indentation size effect and a material characteristic length scale generated by the frequency of obstacles to dislocation mobility within the material. It is proposed that suitable indentation size effect measurement strategies can be adopted to “fingerprint” the type and density of point defects present in a material. In conjunction with elevated temperature testing, it is also proposed to identify the activation energy of the obstacles present. 

The project, therefore, will:

  • Establish best practice guidelines for nano-indentation as a materials screening procedure for point defects.
  • Evaluate characterization-method-related transferability issues, such as size effects or substrate effects, which must be taken into account in order to obtain equivalent data for materials of different plastic damage.
  • Generate guidelines for using new nano-indentation-based methods to identify different types of damage and unravel the superimposing effects of microstructure, size, substrate, graded-layer or pile-up.

About the Centre/Department

The Research Institute for Future Transport and Cities has a thriving student community who are integral to the success of the Institute and contribute to our wide-ranging research portfolio.

We take a fresh approach to the challenges facing society by bringing together world-class experts from art and design, human factors, engineering, computer systems and business studies into one focussed Institute. Our work covers automotive, aerospace, maritime and rail transport modes and allows us to take the lead in cross cutting research developing new forms of transport, new forms of manufacturing and new forms of information provision and security.  Our research focusses on six key themes:

  • Design
  • Manufacturing
  • Materials & Structures
  • Systems
  • Supply Chain
  • Business Environment

We have a unique position in UK universities – with over 140 research staff and 120 PhD research students in the Institute capitalising on our links with Coventry City and its status as a European Living Lab for transport and our close collaboration and joint initiatives with major stakeholders.

Successful Applicants

Successful applicants will have:

  • A minimum of a 2:1 first degree in a relevant discipline/subject area with a minimum 60% mark in the Project element or equivalent with a minimum 60% overall module average, or
  • A Masters Degree in a relevant subject area will be considered as an equivalent. The Masters must have been attained with overall marks at merit level (60%). In addition, the dissertation or equivalent element in the Masters must also have been attained with a mark at merit level (60%).
  • The potential to engage in innovative research and to complete the PhD within a prescribed period of study
  • Language proficiency (IELTS overall minimum score of 7.0 with a minimum of 6.5 in each component).


  • An experimentalist, preferably with some experience of equipment or instrumentation development
  • Degree level understanding of materials science; especially the structure and strength of materials
  • Basic computer coding and/or modelling/simulation skills

Eligibility & Application Procedure


All UK/EU/International students are eligible to apply that meet the academic requirements, the eligibility criteria can be found making an application page.